1.6-典型相关分析

多元统计

第六节 典型相关分析

现实生活中两组变量间的相关关系的问题很多,例如家庭的特征(如户主的年龄、家庭的年收入、户主的受教育程度等)与消费模式(如每年去餐馆就餐的频率、每年外出看电影的频率等)等等。为此,1936年由Hulling提出了典型相关分析,揭示了两组多元随机变量之间的关系。


典型相关分析基本思想
通常情况下,为了研究两组变量 x1,x2,...,xp;y1,y2,...,yq x 1 , x 2 , . . . , x p ; y 1 , y 2 , . . . , y q 的相关关系,可以用最原始的方法,分别计算两组变量之间的全部相关系数,一共有 pq p q 个简单相关系数,这样又烦琐又不能抓住问题的本质。如果分别找出两组变量的各自的某个线性组合,讨论线性组合之间的相关关系,则更简捷。

蔬菜产出水平主要体现在蔬菜总产量(Y1)、人均蔬菜占有量(Y2)、蔬菜总产增长速度(Y3)三个方面,并称作因变量组(简称“产出组”)。问题:因变量组与自变量X1(市场经济综合因素)、X2(劳动力动力因素) 、X3(气候因素)(简称“影响组”)的关系如何?
解答:SAS

data ex;
input y1-y3 x1-x3 @@;
cards;
19519   170.72  9.8    -4.62      -0.54  -1.4
19578   176.22  0.3    -4.13      -0.2    0.97
19637   170.69  0.3    -3.5      -1.93    0.36
19695   166.18  0.3    -2.98      0.29    -0.18
16602   138.52  -16    -1.72      1.37     1.59
25723   212.37  54.9    -0.94    2.73     -0.42
30379   248.22  18.1    0.79     0.13     -1.34
34473   278.85  13.5    1.42     -0.2     0.59
38485   308.47  11.6    1.61     -0.7     -0.8
40514   322.09  5.27    2.07    -0.09     -0.45
42400   334.54  4.66    3.37    -0.97     1.1
48337   378.74  14     3.92     -0.1      0.53
52909   411.89  9.46    4.72    0.1     -0.59
;
proc cancorr data=ex all;var y1-y3; with x1-x3;
/*cancorr典型相关分析,同var x1-x3; withy1-y3*/
run;

(1)模型计算和统计检验:
这里写图片描述
整理得到蔬菜产出水平与影响因素的三个自变量的典型相关系数及特征值:
这里写图片描述
结果表明:前两个典型相关系数较高,表明相应典型变量之间密切相关。
这里写图片描述
结果表明:只有前两对典型变量通过了统计量检验,表明相应典型变量之间相关关系显著,能够用三个自变量影响变量来解释产出变量。
(2)典型相关模型
冗余度分析的结果
这里写图片描述
这里写图片描述

典型变量的解释能力
这里写图片描述

(3)结果分析

  • 自变量X1即市场经济综合因素对中国蔬菜产出水平起根本性作用。
  • 自变量X2对劳动力动力因素起关键作用。
  • 自变量X2即劳动力动力因素是决定人均蔬菜占有量的关键因素。
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页